Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Frenz, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
Hynes, R. C., Payne, N. C. \& Willis, C. J. (1990). J. Chem. Soc. Chem. Commun. pp. 744-745.
Hynes, R. C., Willis, C. J. \& Payne, N. C. (1992). Acta Cryst. C48, 42-45.
IUPAC Information Bulletin No. 33 (1970). Inorg. Chem. 9, 1-5.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Universities of York, England, and Louvain, Belgium.
Modinos, A. \& Woodward, P. J. (1975). J. Chem. Soc. Dalton Trans. pp. 2134-2140.
Sheldrick, G. M. (1990). SHELXTLPC. Version 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1996). C52, 2176-2178

catena-Poly[\{di- μ-nitrato-1:2 $\kappa^{4} O$-bis[(tri-phenylphosphine-P)copper(I)]\}- $\mu-4,4^{\prime}$ -bipyridyl- $\left.N: N^{\prime}\right]$ Tetrahydrofuran Solvate

Peggy-Jean Prest and Jeffrey S. Moore

Departments of Chemistry and Materials Science \& Engineering, and The Beckman Institute for Advanced Science and Technology, University of Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801, USA. E-mail: moore@aries.scs.uiuc.edu
(Received 3 August 1995; accepted 13 May 1996)

Abstract

A copper(I) complex with triphenylphosphine and 4,4'-bipyridine results in a one-dimensional polymer, $\left\{\left[\mathrm{Cu}_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] .2 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right\}_{n}$. The Cu centers are alternately bridged by nitrate counterions and bipyridine ligands. The four-membered $\mathrm{Cu}_{2} \mathrm{O}_{2}$ ring lies on an inversion center ($\frac{1}{2}-x, \frac{1}{2}-y,-z$) and the bipyridyl ligand lies on another inversion center ($\frac{1}{2}-x$, $\frac{3}{2}-y,-z$). The triphenylphosphine ligand coordinates to copper providing a distorted tetrahedral coordination environment, with bond lengths $\mathrm{Cu} 1-\mathrm{P} 2.168$ (1), $\mathrm{Cu}-$ N 2.013 (3) and $\mathrm{Cu}-\mathrm{O} 2.177$ (2) and 2.147 (2) A. The cavities between the chains contain tetrahydrofuran solvent molecules.

Comment

Copper(I) complexes of $4,4^{\prime}$-bipyridine have been studied with regard to the construction of supramolecular networks (MacGillivray, Subramanian \& Zaworotko,

1994; Yaghi \& Li, 1995). Copper(I) is an interesting metal to study due to its well defined tetrahedral coordination geometry, high lability, and potential catalytic and magnetic capabilities (Cotton \& Wilkinson, 1988). A study was initiated on the role of the counterion and ancillary ligand on the network motif.

The X-ray analysis of the crystal that resulted from the complexation of nitratobis(triphenylphosphine)copper(I) with $4,4^{\prime}$-bipyridine in tetrahydrofuran, (I), shows that the copper(I) ions are linked by bridging nitrate anions and $4,4^{\prime}$-bipyridine ligands to form stair-step undulating polymer chains.

(I)

Copper(I) adopts a distorted tetrahedral geometry, with one bond to triphenylphosphine, one to $4,4^{\prime}$ bipyridine and two to separate bridging nitrato O atoms (Fig. 1). The tetrahydrofuran solvent molecule is disordered over two positions and occupies the space between the triphenylphosphine ligands and adjacent chains. The four-membered $\mathrm{Cu}_{2} \mathrm{O}_{2}$ ring lies about an inversion center $\left(\frac{1}{2}-x, \frac{1}{2}-y,-z\right)$ and the bipyridyl ligand lies on another inversion center ($\frac{1}{2}-x, \frac{3}{2}-y$, $-z$). The chains run along the b axis and stack along a twofold screw axis antiparallel to one another (Fig. 2).

Fig. 1. An ORTEPII (Johnson, 1971) view of (I) showing 50% probability displacement ellipsoids for non-H atoms and circles of arbitrary size for H atoms. Symmetrically related equivalent positions for A, B and C are $\left(\frac{1}{2}-x, \frac{1}{2}-y,-z\right),\left(\frac{1}{2}-x, \frac{1}{2}-y\right.$, $-z)$ and $(x, y-1, z)$, respectively.

Fig. 2. A one-dimensional polymer with copper(I) centers alternately bridged by nitrate counterions and $4,4^{\prime}$-bipyridine ligands. The triphenylphosphine ligand and nitrate anion bound to copper(I) reduce the dimensionality of the network.

The title structure illustrates that strongly coordinated ancillary ligands and counteranions can affect network topology with respect to $4,4^{\prime}$-bipyridine. Maximum network dimensionality, when each of the tetrahedral sites on the copper(I) are bound to networking 4,4'bipyridine ligands, is obtained when $4,4^{\prime}$-bipyridine is crystallized with $\mathrm{Cu}^{1}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}$ (MacGillivray, Subramanian \& Zaworotko, 1994). This is a result of the non-coordinating propensity of PF_{6}^{-}. Yet the network dimensionality of the structure formed by copper(I) and $4,4^{\prime}$-bipyridine in the presence of strongly coordinating triphenylphosphine and nitrate groups is reduced to two-dimensional chains. The dimensionality of network structures therefore depends significantly on the tendency of the counteranions and ancillary ligands to coordinate to the metal.

Experimental

$\left[\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{NO}_{3}\right)\right]$ was prepared according to the reported procedure of Gysling \& Kubas (1979). A solution of $4,4^{\prime}$-bipyridine ($0.0194 \mathrm{~g}, 0.124 \mathrm{mmol}$) and $\left[\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{NO}_{3}\right)\right]$ $(0.0126 \mathrm{~g}, 0.019 \mathrm{mmol})$ in tetrahydrofuran (15 ml) was mixed in a glove box under nitrogen. The resulting clear and colorless solution on standing for four days resulted in light-yellow crystals. The density D_{m} was measured by flotation in hexane/carbon tetrachloride solution.

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Cu}_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}-\right.} \\
& \left.\quad\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] \cdot 2 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O} \\
& M_{r}=538.02 \\
& \text { Monoclinic } \\
& C 2 / c \\
& a=29.282(6) \AA \\
& b=12.478(2) \AA \\
& c=14.476(3) \AA \\
& \beta=107.43(3)^{\circ} \\
& V=5046.4(17) \AA^{3} \\
& Z=8 \\
& D_{x}=1.416 \mathrm{Mg} \mathrm{~m}^{-3} \\
& D_{m}=1.38 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Data collection
Enraf-Nonius CAD-4 diffractometer
$\omega-\theta$ scans
Absorption correction: by integration from crystal shape (Sheldrick, 1990) $T_{\text {min }}=0.749, \quad T_{\text {max }}=$ 0.881

4128 measured reflections 3945 independent reflections
$R_{\text {int }}=0.0341$
$\theta_{\text {max }}=23.97^{\circ}$
$h=-31 \rightarrow 33$
$k=0 \rightarrow 14$
$l=-16 \rightarrow 0$
3 standard reflections monitored every 97 reflections
frequency: 90 min intensity decay: 0.6%

3049 observed reflections
$[I>2 \sigma(I)]$

Refinement

Refinement on F^{2}
$R(F)=0.0379$
$w R\left(F^{2}\right)=0.1042$
$S=1.069$
3945 reflections
362 parameters
H -atom parameters refined as riding
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0569 P)^{2}\right.$
$(\Delta / \sigma)_{\max }=0.066$
$\Delta \rho_{\text {max }}=0.604 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.254 \mathrm{e} \AA^{-3}$
Extinction correction: none
Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)
$+7.293 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

$$
\left[\mathrm{Cu}_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] \cdot 2 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}
$$

O4D \ddagger	$0.5590(7)$	$0.1900(11)$	$-0.1014(16)$	$0.112(5)$
$\mathrm{C} 25 D \ddagger$	$0.5498(6)$	$0.3052(12)$	$-0.1053(15)$	$0.094(5)$
$\mathrm{C} 26 D \ddagger$	$0.5933(6)$	$0.3475(11)$	$-0.1157(16)$	$0.107(6)$
$\mathrm{C} 27 D \ddagger$	$0.6144(6)$	$0.2610(16)$	$-0.1601(16)$	$0.123(6)$
$\mathrm{C} 28 D \ddagger$	$0.5874(7)$	0.1710 (11)	$-0.1596(15)$	$0.121(5)$

\dagger Occupancy of 0.40 (2). \ddagger Occupancy of 0.60 (2).

Table 2. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

Cul - Ni	2.013 (3)	$\mathrm{Cul}-\mathrm{Ol}$	2.177 (2)
$\mathrm{Cul}-\mathrm{Ol}^{\text {i }}$	2.147 (2)	C3-C3 ${ }^{\text {ii }}$	1.480 (6)
$\mathrm{Cul}-\mathrm{Pl}$	2.1680 (11)		
$\mathrm{Nl}-\mathrm{Cul}-\mathrm{Ol}^{\text {i }}$	103.05 (10)	$\mathrm{N} 1-\mathrm{Cul}-\mathrm{Ol}$	98.77 (10)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{P} 1$	129.54 (8)	$\mathrm{Ol}^{\text {i }}-\mathrm{Cu}-\mathrm{Ol}$	73.82 (9)
$\mathrm{Ol}^{\text {i }}-\mathrm{Cul}-\mathrm{Pl}$	120.80 (7)	$\mathrm{Pl}-\mathrm{Cul}-\mathrm{OI}$	115.56 (7)
Symmetry codes: (i) $\frac{1}{2}-x, \frac{1}{2}-y,-z$; (ii) $\frac{1}{2}-x, \frac{3}{2}-y,-z$.			

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: CAD-4 Software, PROFILE (Blessing, Coppens \& Becker, 1974). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1971). Software used to prepare material for publication: CIFTAB in SHELXL93.

The authors thank the School of Chemical Sciences Materials Characterization Laboratory at the University of Illinois for X-ray data collection, Dr Scott R. Wilson for his assistance in the structure solution, the US Department of Energy through the Materials Research Laboratory at the University of Illinois (grant DEFG02-91-ER45439) and the National Science Foundation (grant CHE-94-23121) for financial assistance. Additional support from 3M Company and the Camille Dreyfus Teacher-Scholar Awards Program is gratefully acknowledged.

Lists of structure factors, anisotropic displacement parameters, H atom coordinates, complete geometry and torsion angles have been deposited with the IUCr (Reference: FG1111). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Blessing, R. H., Coppens, P. \& Becker, P. (1974). J. Appl. Cryst. 7, 488-492.
Cotton, F. A. \& Wilkinson, G. (1988). Advanced Inorganic Chemistry, 5th ed., p. 1289. New York: Wiley Interscience.
Enraf-Nonius (1989). CAD-4 Software. Version 5. Enraf-Nonius, Delft, The Netherlands.
Gysling, H. J. \& Kubas, G. J. (1979). Inorg. Synth. 19, 92-94.
Johnson, C. K. (1971). ORTEPII. ORNL-3794, revised. Oak Ridge National Laboratory, Tennessee, USA.
MacGillivray, L. R., Subramanian, S. \& Zaworotko, M. J. (1994). J. Chem. Soc. Chem. Commun. pp. 1325-1326
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Yaghi, O. M. \& Li, G. (1995). Angew. Chem. Int. Ed. Engl. 34, 207209.

Abstract

The crystal of the title compound is composed of discrete neutral $\left[\mathrm{Ni}\left(\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NOS}\right)\left(\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}\right)\right]$ molecules. The Ni ion has a distorted square-planar coordination. The bond distances between the Ni atom and the donor $\mathrm{N} 2, \mathrm{~S} 1, \mathrm{~N} 1$ and Ol atoms are $1.948(5), 2.148(2)$, 1.874 (5) and 1.845 (5) \AA, respectively. Although the bond angles around the Ni atom range from 83.4 (2) to $96.1(2)^{\circ}$, their sum is 360.1°. The cyclohexyl ring is disordered.

Comment

N -(2-Hydroxyphenyl)salicylaldimine and its thio derivatives are interesting tridentate ligands. With metals of the first transition series such as $\mathrm{Fe}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}$ and Co^{2+}, these ligands form bridged dimeric complexes which have been the subject of attention from coordination chemists. If amine is present in the reaction, Ni^{2+} alone of these ions has a tendency to form mononuclear square-planar complexes instead of dimers. The crystal structures of Ni^{2+}-Schiff base complexes with different ligands and amines have been reported previously (Elerman, Fuess \& Paulus, 1991; Soriano-García, Toscano, Valdés-Martínez \& Fernández-G., 1985; Elerman, Paulus \& Fuess, 1991; Kabak, Elerman, Özbey \& Atakol, 1995). We report here a new mononuclear Ni^{2+} complex, (cyclohexylamine- N) $\{2-[(2$-thiophenyl)imino-methyl]phenolato- $O, N, S\}$ nickel(II), (I).

(I)

The structure consists of discrete $\left[\mathrm{Ni}\left(\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NOS}\right)\right.$ $\left(\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}\right)$] molecules (Fig. 1). The Ni^{2+} ion is located in a slightly distorted square-planar environment.

(Cyclohexylamine-N) $\{2$-[(2-thiophenyl)-iminomethyl]phenolato-O,N,S\}nickel(II)

M. Nawaz Tahir, ${ }^{a}$ Dinçer Ülkü,, O Orhan Atakol ${ }^{b}$ and Adnan Kenar ${ }^{b}$
${ }^{a}$ Department of Engineering Physics, Hacettepe University, Beytepe 06532, Ankara, Turkey, and ${ }^{b}$ Department of Chemistry, Faculty of Science, University of Ankara, Besevler 06100, Ankara, Turkey. E-mail: dulku@eti.cc.hun. edu.tr
(Received 28 November 1995; accepted 13 May 1990)

.
en

Printed in Great Britain - all rights reserved

